the mean labeling of some crowns
نویسندگان
چکیده
mean labelings are a type of additive vertex labeling. this labeling assigns non-negative integers to the vertices of a graph in such a way that all edge-weights are different, where the weight of an edge is defined as the mean of the end-vertex labels rounded up to the nearest integer. in this paper we focus on mean labelings of some graphs that are the result of the corona operation. in particular we prove the existence of mean labelings for graphs of the form g ⊙ mk1 in the cases where g is an even cycle or g is an α-mean graph of odd size and the cardinalities of its stable sets differ by at most one unit. under these conditions, we prove that g ⊙ p2 and g ⊙ p3 are also mean graphs, and that the class of α-graphs is equivalent to the class of α-mean graphs.
منابع مشابه
Further results on odd mean labeling of some subdivision graphs
Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...
متن کاملfurther results on odd mean labeling of some subdivision graphs
let g(v,e) be a graph with p vertices and q edges. a graph g is said to have an odd mean labeling if there exists a function f : v (g) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : e(g) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. a graph that admits an odd mean lab...
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولSome Graph Operations Of Even Vertex Odd Mean Labeling Graphs
A graph with p vertices and q edges is said to have an even vertex odd mean labeling if there exists an injective function f:V(G){0, 2, 4, ... 2q-2,2q} such that the induced map f*: E(G) {1, 3, 5, ... 2q-1} defined by f*(uv)= f u f v 2 is a bijection. A graph that admits an even vertex odd mean labeling is called an even vertex odd mean graph. In this paper we pay our attention to p...
متن کاملSome Results on Total Mean Cordial Labeling of Graphs
A graph G = (V,E) with p vertices and q edges is said to be a Total Mean Cordial graph if there exists a function f : V (G) → {0, 1, 2} such that for each edge xy assign the label ⌈ f(x)+f(y) 2 ⌉ where x, y ∈ V (G), and the total number of 0, 1 and 2 are balanced. That is |evf (i)− evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0,...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
journal of algorithms and computationجلد ۴۵، شماره ۱، صفحات ۴۳-۵۴
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023